High quality monitoring of water systems using in situ automatic measurement stations that incorporate real-time data quality analysis tools

John B. Copp¹, Janelcy Alferes², Peter Vanrolleghem²

April 30, 2014

Presented by..... John B. Copp, Ph.D.

¹ Primodal Inc. & Primodal Systems Inc., Hamilton, ON, Canada

² Université Laval, Quebec, QC., Canada

Overview

- ➤ Brief Introduction to Primodal/ULaval
- ➤ RSM30 Monitoring Stations/Networks
- ➤ Real-Time Data Quality Evaluation
- > Discussion for the Future

Introducing Primodal / U Laval

- > Expertise
 - Process Engineering, Design, Control, Modelling, Monitoring and Data Analysis
 - COMMON THEME → Data Evaluation
 - the need for accurate and representative data

Introducing Primodal / U Laval

- ➤ Primodal Inc. / Primodal Systems Inc.
 - Offices in Hamilton, ON.; Quebec, QC; Kalamazoo, MI
 - PI: Water/Wastewater Consulting Firm
 - PSI: Monitoring Equipment
- > modelEAU / Université Laval
 - Based in Quebec, QC.
 - Water and Modeling-based Research Group

Primodal / U Laval Cooperation

- > Platform
 - RSM30[™] monitoring station
 - Portable and sensor independent

- ➤ Advanced Data Evaluation Tools
 - PrecisionNow[©]
 - Real-time data evaluation methods and data validation algorithms

Monitoring for Process Understanding

> The Potential

- Tracking Impacts
- Limitless applications for study
- Whole-system modelling
- Decision-making

> The Pitfalls

- Data Accuracy
 - system behavior
- Data Graveyards
- Communication
- Data Expertise
- Data Maintenance
- Data Quality

> Typical Data

- Grab samples
- 1-yr time period
- Variations
 - Time of Day
 - Season
 - Weather
 - Location

➤ Grab Sample Issues

- Behavior missed
- Trends missed
- Events missed
- Average case missed

➤ Grab Sample Issues

- Concentrations unrepresentative
- Trends incorrect
- Impacts incorrectly inferred

➤ High Frequency Monitoring

- Essentially continuous
- Trends
- Event detection

Problem Definition

Need for advanced data quality evaluation

Problem Definition

Need for advanced data quality evaluation

Effective management of water systems

Monitoring and assessment strategy

Reliable water quality information

Modelling, forecasting, control...

- Outliers
- Sensor Faults
 - Noise
 - Malfunction
 - Calibration

- Malfunction
 - zero

- Malfunction
 - OddBehaviour

- Malfunction
 - Noise

- More complicated
 - Detecting the difference between real events and problems

Identified Needs In Water Monitoring

> Identified Issues:

- complex data graveyards too common
- too much post-processing effort
- data from faulty sensors too common

<u>Challenge:</u>
Automated Data Validation

Methods for Data Validation

PrecisionNow Practical Implementation

Typical Typical Water Sector

One-step calcs.
Cross-correlations
Manual Procedures
Multi-sample ave.

Real-time automated data validation

Classic Methods for Data Validation

➤ Single data validation: **one-step**

Method	Description
Manual evaluation	Comparison with grab samples
Constant value (TCV)	Constant value in allowed period
Range	[min, max] allowed values
Rate of change	[min, max] allowed rate of change over time
Running variance	[min, max] allowed StD

Univariate

Data from Quebec City: St Charles River

Conductivity raw data

Univariate

Data from Quebec City: St Charles River

> Outlier detection followed by a LowPass Filter

Model-Based Method for Outlier Detection

- > Univariate time series analysis
 - Outlier detection

- Model-based forecast of expected data \hat{x}
- Prediction interval

$$x_{\lim} = \hat{x} + K \cdot \hat{\sigma}_e$$

Model-Based Method for Outlier Detection

Combination of Methods

- PrecisionNow univariate analysis
 - Multi-step method combination

Combination of Methods

➤ Multivariate time series analysis

Multivariate – Simple Case

- Data from Quebec City: St Charles River
 - Conductivity vs TSS (data after LowPass Filter)
 - no alarm

Confirmation of real events as picked up by other measurements

Multivariate – PCA Approach

- Variable 20% bias
 (Cond₁,Cond₂)
- Variable bias (pH₁, pH₂), (Turb₁, Turb₂)
- Const. 5% bias
 (Temp₁, Temp₂)

Multivariate – PCA Approach

Real-Time Data Modules – PCA

Data in the new space – 2 Components

Statistics period I and II

Conclusions

- > RSM30 / PrecisionNow
 - Easily deployed in various environments (WWTP, river,...)
 - Data logging
 - Customizable, real-time data evaluation capability
 - Sensor independent
 - Algorithms used as a stand-alone package (office) or in conjunction with an RSM30 (water's edge)

Conclusions

>RSM30

 Easily shipped and deployed in various environments (WWTP, river,...)

> PrecisionNow provides

- Data logging
- Customizable, real-time data evaluation capability
- Sensor independent
- Can be used as a stand-alone package (office) or in conjunction with an RSM30 (water's edge)

Conclusions

- Dealing with faulty sensors represents a challenge for effective WQ monitoring
- Real-time fault detection minimizes postprocessing effort, and maximizes response times
- ➤ Uni- and Multi-variate methods allow for the detection of multiple faults in real-time

Acknowledgements

Thank-you!

John B. Copp Ph.D.

Primodal Systems Inc. Hamilton, Ontario (905) 523-8958

copp@primodal.com www.primodal.com

